About this blog

I feel this blog as a reflection of my thoughts to myself , and sometimes as a public diary, and the is my only friend to share my thoughts who says never a "oh no! ,you shouldn't....That is boring...."

3D visualizations of Unit balls in abstract spaces of various Norms and Inner products

 The following are for various p-norm spaces.

p=1+i
p= 1-4i

p= 7-7i

 

p=2-6i


 

 

p=0+0.01i


p= -5


   

 
p=0.5  
p=0.1


p=1.0

p=3


p=i

p=9

p=1.6


p=2


 The following are for various Iner-products that depend on operator A.

 A=[2 1 0; 1 3 0; 0 0 1];

 A=[2 1 i; 1 3 i; i i 1];

 A=[2i 1 i; 1 3i i; i i 1i];

 A=[8+2i 0 0; 0 3-i 0; 0 0 1+6i];

 A=[8+2i 0 0; -10 3-i 0; -2 0 1];

 A=[2 0 0; -1 3i 0; -i -2 1];

 A=[2 0 0; -1 3i 0; -i -2 0];

 A=[2 0 0; -1 3i 0; 0 -2 0];

 A=[2 0 0; -7 i 0; 0 0 1];

 A=[2 0 0; -20i 1 0; 0 0 1];


 A=[2i 0 0; -20i 1 0; 0 0 1+i];

 A=[2i 0 0; -4i 1 0; 0 0 1+i];